

The 12th International Conference on Environmental and Rural Development

Economic Assessment of Biogas Production Potential from Commercial Pig Farms in Cambodia

Lyhour HIN*, Bunthan NGO, Lytour LOR, Sengheang SUY, Dyna THENG, Chanphakdey DOK, Sokhom MECH, Chan Makara MEAN, Sovanndy YUT, Makara LAY, and Bart FREDERIKT <u>Email: hlyhour@rua.edu.kh</u>

INTRODUCTION

Pork is the most eaten meat in Cambodia, accounting 52.8% of annual meat consumption. In 2018, commercial pig farms rose by 30%, but the increase also causes concerns over wastewater management. By law, It is obligatory for all commercial animal farms to construct biogas systems, in order to manage waste and convert it into energy usable for the farms.

Therefore, the study aimed (1) to explore the characteristics of commercial pig farms and wastewater use; (2) to analyze the quality of biogas produced from the covered lagoons in the farms; and (3) to estimate methane production, electricity production, and CO_2 reduction equivalent.

METHOD

- The study was conducted from January to September 2020, targeting 9 commercial fattening farms in 6 provinces, based on the criteria under which the farms were interested in biogas systems. A set of questionnaire was used as a tool for data collection, along with direct observation and group discussion with the farm owners and relevant stakeholders.
- To analyze the biogas quality, a 5000 gas analyser was used and to analyze peak loads in the farms, A Hioki PW3365-20-01/5000 power logger was used. It is capable of measuring three-phase voltage with a high electrical current of up to 5,000 A.

Figure 1 Flow diagram of a typical fattening pig farm from manure (a) to the covered lagoon (b) that produces biogas for running biogas generators (c & d) to generate electricity for the farm (e & f)

RESULTS

Table 1 Description of daily wastewater production biogas production

Source	Unit	Average ± SE	
Water	m ³ d⁻¹	125.8 ± 14.1	
Dung (fresh)	t d⁻¹	6.3 ± 0.7	
Urine	m ³ d ⁻¹	10.5 ± 1.2	
Evaporation	m ³ d ⁻¹	2.8 ± 0.3	
Total waste water	m ³ d ⁻¹	139.8 ± 15.7	
	m ³ d ⁻¹ head ⁻¹	0.033 ± 0.004	
DM content	%	0.9	
Total DM	t d ⁻¹	1.3	
Biogas	Nm ³ d ⁻¹	415	
	Nm ³ y ⁻¹	137,033	
	Nm ³ v ⁻¹ head ⁻¹	32.7	

Table 2 Biogas quality measured among the farms with covered lagoons

Biogas quality	Unit	Mean ± SE	Min	Max
CH_4	%	59.5 ± 3.0	52.0	64.5
CO ₂	%	31.5 ± 2.8	26.9	40.0
O ₂	%	1.3 ± 0.7	0.1	3.0
H_2S	ppm	$2,256 \pm 504$	818	3,295

Figure 2 relationship between CH₄ and H₂S (left); CH₄ and O₂ (right)

Table 3 Estimation of annual electricity production and CO₂ reduction

Description	Unit	Value
Potential electricity production	kWh y ⁻¹	178,142
Estimated electricity for farm coverage	kWh y⁻¹	124,700
Estimated farm demand	kWh y ⁻¹	166,667
Percentage of farm coverage from biogas	%	75
CO ₂ reduction	Unit	
From CH ₄ reduction quivalent	tCO ₂ eq y ⁻¹	2,751
From grid electricity quivalent <i>Total</i>	tCO ₂ eq y ⁻¹	82 <i>2,832</i>
CO ₂ reduction per head/year	tCO ₂ eq y ⁻¹ head ⁻¹	0.676

CONCLUSION

- In the studied farms, electricity produced from biogas can meet 75% of annual farm electricity demand and about 2,832 tCO₂eq y⁻¹ may be reduced per farm.
- A business model should be further considered for successful implementation.

This study was made possible thanks to the project "Reduction of Greenhouse Gas Emission through Promotion of Commercial Biogas Plant in Cambodia" implemented by United Nations Industrial Development Organization (UNIDO).