The Evaluation of Agricultural Production Information and Sources of Local Farmers in Rural Areas of Cambodia

SHINOBU YAMADA*, MACHITO MIHARA**, KUMIKO KAWABE*

- * Institute of Environmental Rehabilitation and Conservation, Tokyo, Japan
- * * Faculty of Regional Environment Science Tokyo University of Agriculture, Japan

Abstract: The main object of this study was to quantitatively grasp the relationship between agricultural production information and information sources, which local farmers attach great importance to in order to realize stable and sustainable agricultural management. A questionnaire survey of local farmers was conducted in Kampong Cham, Cambodia, and received 437 responses. The results of the analysis are summarized as follows. 1) According to the results of Multiple Correspondence Analysis, it was confirmed that the relationship between the information source and the agricultural production information necessary for improving the agricultural management of local farmers, specifically, agricultural production information related to daily farming is obtained from familiar sources such as other farmers in the village and parents. In addition, the same tendency is seen in the expected information sources. 2) According to logistic regression analysis, the current sources of information and the expected sources of information were identified for the four agricultural production information sources that local farmers consider the most important. It was confirmed that local farmers have high expectations for Government officers (DDAFF officers) in addition to familiar sources such as other farmers in the village and parents. However, the results suggest that they are not aware of specific sources of information regarding market information and agricultural production information related to new technologies, which are assumed to be necessary information for improving the current agricultural management..

INTRODUCTION

Recently, with the economic development in Cambodia, the demand for various agricultural products such as vegetables and fruits has increased along with the staple food, rice. Despite these changes in domestic demand for agricultural products, the current situation in rural areas is that many local farmers only want to expand rice production. Producing a variety of agricultural products in addition to rice production, for which demand is expected to increase in the future, will enable sustainable and stable agricultural management and is expected to improve the poverty problem in rural areas. In order to shift from traditional farming to sustainable and stable farming, it is necessary for local farmers to clarify their evaluation of important agricultural production information and sources. The main object of this study was to quantitatively grasp the relationship between agricultural production information and information sources, which local farmers attach great importance to in order to realize stable and sustainable agricultural management.

OBJECTIVE

The specific analysis of this study has the following two issues. 1) According to Multiple Correspondence Analysis, it was confirmed that the relationship between the information source and the agricultural production information necessary for improving the agricultural management of local farmers. 2) According to logistic regression analysis, the current sources of information and the expected sources of information are identified for the four agricultural production information sources that local farmers consider the most important. Furthermore, The research site was in Kampong Cham Province, Cambodia. The total number of respondents is 437.

RESULT AND DISCUSSION

The relevant of agricultural production information and sources of local farmers

Firstly, Table 1 shows agricultural production information that local farmers consider important. These are the results from multiple answers.

Table 1 The Agricultural production information that local farmers consider important

Index	Agricultural p	roduction inf	ormation							
Number	Information	Information	New	Information	Information	Market	Information	Price	Information	Planting
	about seeds	about	technology	about	about	information	about	information	about	information
response		machinery	information	chemical	organic		training		harvest	
437 (n)	194	26	135	32	199	113	117	32	15	138
437 (%)	0.44	0.06	0.31	0.07	0.46	0.26	0.27	0.07	0.03	0.32

Source : Survey Date

Secondly, Multiple Correspondence Analysis confirms agricultural production information and its source Relevant that local farmers consider important. Specifically, Figure 1 shows to whom local farmers are given agricultural production information. In addition, Figure 2 shows who local farmers are conscious of wanting to receive agricultural production information.

Fig.1 Results of required agricultural information of local farmers and response patterns of information sources-Correspondence analysis-

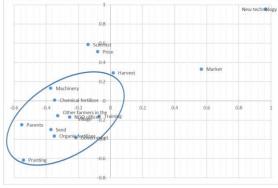


Fig.2 Results of response patterns of required agricultural information of local farmers and expected sources-Correspondence analysis-

According to the results of Multiple Correspondence Analysis, it was confirmed that the relationship between the information source and the agricultural production information necessary for improving the agricultural management of local farmers, specifically, agricultural production information related to daily farming is obtained from familiar sources such as other farmers in the village and parents. In addition, the same tendency is seen in the expected information sources.

Identification of current and expected sources of agricultural production information by logistic regression analysis

Table 2 Predicted results of logistic regression analysis

				Hillo do you clinix alloud gire								IIOTIIIII COOT.		
					partial regression	standard			odds	partial regression	standard			odds
		n	- 5	variable	coefficient	error	Wald test	P-value	ratio	coefficient	error	Wald test	P-value	ratio
Organio	Organic fertilizer=0	238	54.46	Government	0.3601	0.2241	2.5819	0.1081	1.4335	1.1893	0.2616	20.6690	0.0000 **	3.284
fertilizer	Organic fertilizer=1	199	45.54	Village leader	0.1394	0.2623	0.2824	0.5951	1.1496	0.0842	0.2582	0.1064	0.7443	1.087
	Whole sample	437	100.00	Other farmers in the village	0.2730	0.2116	1.6638	0.1971	1.3139	1.3164	0.2819	21.8084	0.0000 **	3.729
				Parents	0.5174	0.2288	5.1113	0.0238 *	1.6776	1.6094	0.5020	10.2777	0.0013 **	4.999
				Scientist	-0.5759	0.7404	0.6050	0.4367	0.5622	0.9104	0.9729	0.8757	0.3494	2.485
				NGO officer	0.4675	0.2640	3,1370	0.0765	1.5961	0.1532	0.2600	0.3473	0.5557	1.165
				Other	-0.2684	0.5260	0.2603	0.6099	0.7646	-0.5078	0.6857	0.5485	0.4590	0.601
				Constant	-0.7590	0.2175	12.1781	0.0005 **	0.4682	-1.3692	0.2574	28.2984	0.0000 ++	0.254
				likelihood function	587.3362					539,3848				
				AIC	603.3362					555,3848				
	Seed=0	243	55.61	Government	0.5806	0.2261	6.5919	0.0102 *	1.7871	0.7626	0.2551	8.9340	0.0028 ++	2.1431
	Seed=1	194	44.39	Village leader	-0.0735	0.2637	0.0777	0.7805	0.9292	-0.0941	0.2502	01414	0.7069	0.9103
	Whole sample	437	100.00	Other farmers in the village	-0.6939	0.2156	10.3566	0.0013 **	0.4996	0.7650	0.2642	83816	0.0038 **	2 148
				Parents	0.4539	0.2338	3 7687	0.0522	15744	38138	10324	13 6453	0.0002 **	45.321
				Scientist	0.1528	0.6975	0.0480	0.8266	1.1651	0.1632	0.9086	0.0323	0.8575	1.177
				NGO officer	-0.3861	0.2675	2.0833	0.1489	0.6797	-0.6668	0.2666	6.2555	0.0124 +	0.513
				Other	0.1473	0.4964	0.0880	0.7667	1.1587	-0.8490	0.6748	1.5829	0.2083	0.4271
				Constant	-0.2277	0.2164	1.1074	0.2926	0.7964	-0.8303	0.2470	11.3012	0.0008 ++	0.435
				likelihood function	579.517	02104	1.1074	02020	0.7504	540,8364	02470	11.5012	0.0000	0.400
				AIC.	595.517					556.8364				
Pranting	Pranting=0	299	68.42	Government	0.2955	0.2399	15173	0.218	1.3438	1 1972	1,1972	0.2867	17 4404 ++	3.3110
	Pranting=1	138	31.58	Village leader	-0.2504	0.2928	0.7311	0.3925	0.7785	-0.6635	-0.6635	0.2811	5 5 7 0 5 *	0.515
	Whole sample	437	100.00	Other farmers in the village	-0.1516	0.2287	0.4392	0.5075	0.8594	10073	1.0073	0.2729	13 6204 **	2 738
	Willow aumpre	407	100.00	Parents	0.1316	0.2411	3 3245	0.0683	1.5520	1.2672	1.2672	0.4519	7.8625 **	3.5500
				Scientist	1.0322	0.7196	2.0572	0.1515	2.8072	1.0682	1.0682	0.8374	1.6273	2.910
				NGO officer	-0.6587	0.3023	4.7484	0.0293 +	0.5175	-0.3361	-0.3361	0.2735	1.5109	0.714
				Other	-1.4805	0.7653	3.7427	0.053	0.2275	-1.5216	-1.5216	1.0598	2.0613	0.2184
				Constant	-0.7991	0.2342	11.6413	0.0006 **	0.4497	-1.6632	-1.6632	0.2745	36.7165 **	0.1895
				likelihood function	526.6545	02042	11.0410	0.0000	0.4407	488,0116	1.0002	02740	00.7100 ***	0.1000
				AIC.	542.6545					504.0116				
New	New technology=0	302	69 11	Government	0.406	0.2385	2 8984	0.0887	1 5009	0.3347	0.2630	16193	0.2032	1.3975
technology		135	30.89	Village leader	-0.0523	0.2827	0.0342	0.8533	0.9491	1,2108	0.2522	23.0420	0.0000 ++	3.356
	Whole sample	437	100.00	Other farmers in the village	-0.0602	0.2271	0.0703	0.7908	0.9416	-0.1729	0.2925	0.3496	0.5543	0.841
	whole sample	437	100.00	Parents	0.0002	0.2271	0.0703	0.7508	1.2735	0.1729	0.2525	0.3466	0.5043	1.369
				Scientist	13574	0.2460	3 4967	0.0615	3.8862	18008	0.4686	4.4038	0.0021	6.054
				NGO officer	0.0798	0.7259	0.0817	0.7750	1.0831	0.3887	0.8581	2.0163	0.0359 *	1,475
				Other	0.4095	0.5155		0.7750	1.5061	1.6256	0.5557	8,5566	0.1006	5.081
					0.4095 -1.1072	0.5155	0.6311 22.6671	0.4269	0.3305	1.6256 -1.6025	0.5557	39,4236	0.0034 **	0.201
				Constant		u.2326	22.6671	#* 000u.u	0.3305		0.2552	39.4236	U.UU000 **	u.201
				likelihood function	530.7896					501.0674				
	05 ** P<0.01			AIC	546.7896					517.0674				

According to logistic regression analysis, familiar sources such as other farmers and parents in the village are currently the main sources of four agricultural production information that local farmers consider important. However, it became clear that local farmers wanted to have an information source that matched the content of agricultural production information.

CONCLUSION

The results of the analysis are summarized as follows. According to the results of Multiple Correspondence Analysis, it was confirmed that the relationship between the information source and the agricultural production information necessary for improving the agricultural management of local farmers, specifically, agricultural production information related to daily farming is obtained from familiar sources. In addition, it was confirmed that local farmers have high expectations for Government officers (DDAFF officers) in addition to familiar sources such as other farmers in the village and parents. However, the results suggest that they are not aware of specific sources of information regarding market information and agricultural production information related to new technologies, which are assumed to be necessary information for improving the current agricultural management.