

Preparation of Effective Microorganisms Based Compost Using Some Selected Wastes for Improvement of Plants Growth

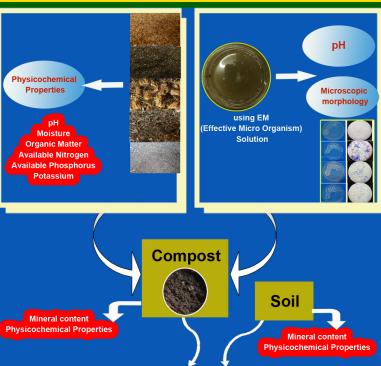
EM 02

Thidar Khaing, Lecturer, Department of Chemistry, University of Mandalay, thidarkhaing7878@gmail.com Nyo Nyo Win, Associate Professor, Department of Chemistry, Sagaiang University, nyonyowin364@gmail.com Aye Mon Thida Nyo, Associate Professor, Department of Chemistry, University of Mandalay, arntmonnyo@gmail.com

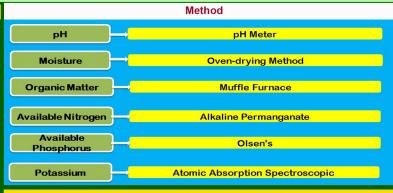
Solid waste disposal is the most pressing problem facing mankind throughout the world. The solid waste management plays a significant role to create a sustainable environment. Some vegetable wastes such as rice husk, cotton husk, coconut husk, pigeon-pea husk and chicken manure were selected for chemical analysis. The physicochemical properties of vegetable wastes were carried out by using standard methods. The effective microorganism (EM) solution was prepared from kitchen vegetable wastes except onion and garlic peels to ferment for two months. The microorganisms that contain in prepared EM solution were studied by using microscopic morphology. The pH of prepared EM solution was measured by using pH meter. The compost was prepared from the vegetable waste materials and prepared EM solution by using aerobic method. The yield percent of compost was determined by calculation method. The yield percent of prepare compost was found to 55%. The mineral contents of compost and soil sample were measured by using EDXRF spectroscopy. The physicochemical properties of prepare compost and soil sample were determined by using standard methods. Planting the seedlings of some selected useful vegetables in Physicochemical properties of vegetable wastes various ratio of the prepare compost and soil sample .The growth of plant rates were found to be effective by the planting experiment.

INTRODUCTION

Compost is organic matter that has been decomposed in a process called composting. This process recycles various organic materials otherwise regarded as waste products and produces a soil conditioner.

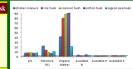

Composting is a technique which can be used to reduce the amount of organic waste through recycling and the production of soil fertilizers and conditioners. Compost is primarily used as a soil conditioner and not as much as a fertilizer because it contains a high organic content (90-95 %) but generally low concentrations of nitrogen, phosphorus, potassium as well as macro and micro nutrients compared to commercial fertilizers.

Effective Microorganisms (EM) are mixed cultures of beneficial naturallyoccurring organisms that can be applied as inoculants to increase the microbial diversity of soil ecosystem.


OBJECTIVES

- To study the physicochemical properties of compost with different wastes.
- The vegetable wastes are very effective in soil nutrient.
- The principal goal of nature planting .
- To produce abundant and healthy crops without the use of chemical fertilizers and pesticides and without causing adverse effects on the natural environment.

METHODOLOGY



Planting Experiment

RESULTS AND DISCUSSION

Sample description	chicken manure	rice husł	coconut hush	cotton husk	pigeon pea husk
pН	7.12	7.43	7.62	6.62	7.21
Moisture (%)	21.60	12.93	8.45	6.24	10.18
Organic Matter	41.02	79.36	88.12	89.97	20.50
Available N	2.66	0.41	0.31	3.36	2.15
Available P	0.52	0.02	0.01	0.48	0.28
Available K	1.12	0.93	0.16	0.51	1.25

Cultural and Microscopic Morphology of Isolated Bacteria

	Col	ony Morphology			Micr	oscopic Morpho	logy
Sample Name	Size (mm)	Color	Elevation	Shape	Size (um)	Gram' reaction	Shape
EM1	1	Yellow (opque)	raised	round	$1-2 \times 2-4$	+	Small Rod
EM2	3-4	White (opque)	flat	Irregular	$1-2 \times 2-4$	+	Rod (spore)
EM3	3-4	White (opque)	raised	Irregular	$2-3 \times 3-4$	+	Rod (spore)
EM4	4-6	White (opque)	raised	round	2-3 × 3-4	+	Rod (spore)

Total Weight of adding material(g) Dried Weight of Prepared Compost(g)

1100

Effective Microorganism Solution 4.29 **Yield Percent of Prepared Compost**

2000

Relative Abundance (%) of Elemental Composition

OIFIE	pareu Com	JUST ATTU F	ianung son	
No	Element	Symbol	Prepare Compost (%)	Planting Soil (%)
1	Silicon	Si	40.413	56.573
2	Calcium	Ca	26.922	4.410
3	Iron	Fe	5.143	11.110
4	Potassium	K	22.596	5.546
6	Sulfur	\mathbf{s}	2.997	2.225
7	Titanium	Ti	0.933	1.127
8	Manganese	Mn	0.350	0.219
9	Strontium	Sr	0.229	0.065
10	Copper	Cu	0.094	0.033
11	Chromium	Cr	0.088	0.032
12	Zinc	Zn	0.076	0.030
13	Zirconium	Zr	0.065	0.067
14	Rubidium	Rb	0.060	0.020
15	Bromine	Br	0.035	0.031

pH, Moisture and Ash Value of Prepared compost and Planting Soil

oompost and in				
Sample	pН	Moisture(%)	Ash(%)	
Planting soil	8.81	2.24	10	
Prepared compost	8.76	12.19	45	
Available Nitroge Potassium Value Planting Soil				
Potassium Value	of F		npost and	oi
Potassium Value Planting Soil	of F	repared Con	npost and	oi
Potassium Value Planting Soil Chemical Propertie	of F	Prepared Con	npost and	oi

The Growth Rate of Rosell

		Roselle	
Day	Blank	1:10	1:5
10	4.11	4.40	4.81
20	6.14	6.43	6.84
30	8.17	8.46	8.87
40	10.21	10.50	10.91
50	12.23	12.52	12.93
60	14.25	14.54	14.95
	The (Growth	Rate o

	The C	Growth	Rate of
ay	Blank	Pumpkii 1:10	ı 1:5
0	8.10	8.39	8.80
20	10.12	10.41	10.82
80	12.13	12.42	10.83
10	14.14	14.43	14.84
50	16.18	16.47	16.88
50	18.21	18.50	18.91

6.49 6.20

5.18

2.40 3.12 3.41 3.82

> 4.42 5.47 4.83

The Growth Rate of Nannan

		rowth F idy's fing		Lady	S TIN	ge			
Day	Blank	1:10	1:5						
10	8.10	8.39	8.80		10	•	fank #1	10 = 1:0	
20	10.11	10.40	10.81		16 -				
30	12.13	12.42	12.83		12 -	mil.		Ш	
40	14.15	14.44	14.85	\neg		Ш	Ш	Ш	
50	16.18	16.47	16.88		1	Ш	Ш	Ш	ı
60	18.20	18.49	18.90		0 10	20	30	40	

The Growth Rate of Cow pea

Day		Con per	•	
Day	Blank	1:10	1:5	
10	8.11	8.40	8.81	20 **Slank *120 **105
20	10.13	10.42	8.83	an 11
30	12.14	12.43	12.84	
40	14.16	14.45	14.86	
50	16.17	16.46	16.87	
60	18.20	18.49	18.90	0 10 20 30 40 50 60

Day		Mustaro		
25.11.3	Blank	1:10	1:5	
10	4.15	4.44	4.85	16
20	6.16	6.45	6.86	14
30	8.18	8.47	8.88	. "
40	10.20	10.49	10.90	- 7:
50	12.21	12.50	12.91	4 2
60	14.22	14.51	14.92	

CONCLUSION

This experiment was done in an effort to solid wastes management by investigating homemade con posting with effective microorganism solution. From this analysis, vegetable waste materials were used in evaluation provided a better environment for EM to grow produce quality compost. The yield percent of prepared compost was found to be 55% and it is acceptable mount in prepare compost. The some physicochemical properties of vegetable wastes and prepare compost were lie within the limiting range and it is suitable for planting. Treatment with prepared compost is most growth in every plant. Thus, the prepared compost was suitable to be used for plant growth

