

The 12th International Conference on Environmental and Rural Development

Effects of Air Injection and Iron Oxide Pellet Addition on Hydrogen Sulfide Removal and Biogas Production

Lytour LOR*, Machito MIHARA, Bunthan NGO, Lyhour HIN, Dyna THENG, Sokhom MICH, Chan Makara MEAN, Chhiengputheavy CHHORTH, and Bart FREDERIKS

Email: lor_lytour@yahoo.com

INTRODUCTION

Hydrogen Sulfide (H_2S) is an unwanted gas mixed in biogas because it is toxic to humans at low concentrations and corrosive to engines. High concentrations of H_2S can corrode engines or metal parts, and lead to faster degradation of engine lubricant oil. Various methods of H_2S removal are available with their own advantages and disadvantages.

This study aimed to compare the 2 desulfurization methods, air injection and iron oxide pellets, on H_2S removal and quantity and quality of biogas producing from pig manure and food waste.

METHOD

The experiment was carried out with two floating drum digesters (1 m^3 each) constructed at Royal University of Agriculture, Phnom Penh, from January to August 2020. Three levels of air injection at 2%, 4%, and 6% of O_2 regarding the daily biogas production and iron oxide pellets at 1 kg, 2 kg, and 4 kg per m^3 of biogas were applied to remove H_2S in biogas from different raw materials of pig manure and food waste. Air was daily injected into the floating drum after biogas was emptied. Iron oxide pellets were stored in a filter container through which biogas was passed and H_2S was removed. The amount of daily biogas production was quantified by gas flow meter, and biogas quality was measured using a GEM5000 gas analyzer.

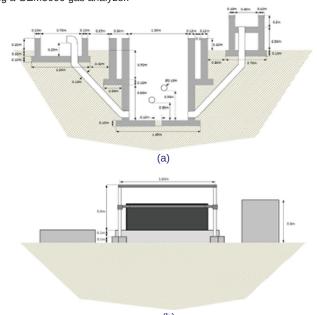


Figure 1 Technical drawing of the floating drum biodigester used in this experiment, cross-section of the digester (a) floating drum in which air injection was injected (b)

RESULTS

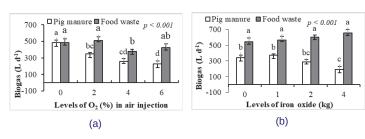


Figure 2 Comparison of biogas production with air injection (a) and with iron oxide pellet (b)

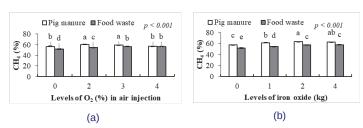


Figure 3 Comparison of CH_4 content with air injection (a) and with iron oxide pellet (b)

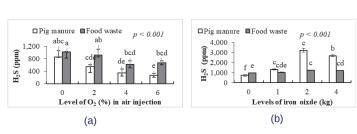


Figure 4 Comparison of H_2S reduction by air injection (a) and by iron oxide pellets (b)

CONCLUSION

It was concluded that both desulfurization methods with air injection and iron oxide pellets were effective in H_2S removal, however the use of air injection tends to be more effective than ferrous oxide.