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Abstract TOPMODEL, a topography-based, semi-distributed hydrological model was 

applied to the 84 km
2
 Atari catchment in Eastern Uganda. The study sought to identify the 

minimum number of rainfall events needed to optimally calibrate 5 unknown parameters for 

yearly hydrological simulation. Model input data was daily averaged precipitation, river 

discharge and evapotranspiration for the year 2015 with the output being simulated 

discharge. A rainfall event was defined as consecutive days of effective rainfall - effective 

rainfall being a daily rainfall ≥ 5.0 mm. Parameterization was done for Sequentially 

Accumulated Rainfall Events (SARE), beginning with 1 event and sequentially progressing 

until all 54 observed rainfall events in the year were used. All SARE had similar starting 

dates with the end dates being variable. The ‘true’ parameters were those derived from 

inputting all observed rainfall events while the other instances of the parameters from 

partial SARE were classified as ‘non-true’. Elimination criterion of ‘non-true’ parameters 

was set at an error of ±30%. Parameter values varied with the change in number of rainfall 

events, showing their dependence on rainfall characteristics. Downslope saturated 

transmissivity (Te) and maximum root zone storage deficit (SRmax) were the most and least 

variable from their means respectively. Also, exponential decay parameter (m) and delay 

time constant (td) needed the least and the greatest number of rainfall events to stabilise 

within the ±30% error bounds respectively. Therefore, the minimum number of rainfall 

events required to calibrate TOPMODEL and to optimise td in mid-sized equatorial 

catchments in Eastern Uganda are equivalent. Consequently, it required at least 49 rainfall 

events to calibrate TOPMODEL in 2015. 
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INTRODUCTION 

Observed hydro-meteorological data are useful for irrigation and drainage planning. In areas that 

lack this data, hydrological models are used to predict stream discharge. One such model is 

TOPMODEL, a conceptual, semi-distributed hydrological model (Beven and Kirkby, 1979) that 

has been used worldwide. In Africa, TOPMODEL was applied in a humid tropical climate in 
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Nigeria (Campling et al., 2002) and in an Ethiopian catchment (Gumindoga et al., 2014). To date, 

the authors have not found published evidence of the application of TOPMODEL in Uganda.  

Generally, Uganda has a scarcity of hydro-meteorological data, and worse still, even the 

available data is of poor quality, e.g., temporal gaps, unreliability, and inaccuracy of rating curves. 

Notably, most Ugandan rivers are ungauged, and bleaker still, only about 33% of installed water 

level gauging stations are currently operational (MWE, 2013).  

Given the challenges above, hydrological models could come in handy. But hydrological 

models need calibration, a process that requires the input of observed hydro-meteorological data. 

For this reason, Atari catchment was chosen as a target site for the study. Unlike many catchments 

in Uganda, it is equipped with modern hydrological and meteorological monitoring facilities. The 

TOPMODEL concept was thus applied to the Atari catchment located in Eastern Uganda.  

According to Coles et al. (1997); (1) Rainfall intensity influences rainfall-runoff response of a 

catchment, and (2) Calibrated parameters are only relevant to the rainfall event(s) that was used for 

their calibration. From these findings, it would be ideal to use all possible permutations of rainfall 

events to achieve representative parameters suitable for yearly hydrological simulations. However, 

given the previously mentioned observed data deficiencies in Uganda, it is necessary to have 

insight into the premise that limited observed data may be sufficient to calibrate model parameters 

which can be used for yearly hydrologic simulation. Therefore, the purpose of the study is to 

identify the minimum number of rainfall events required for optimal yearly TOPMODEL 

parameter calibration. 

METHODOLOGY 

Study Site 

The study area is Atari, a headwater catchment of Mt. Elgon in Eastern Uganda, with a drainage 

area of 84 km
2
 above the stream gauging station and a corresponding channel length of 33 km. Its 

topography is comprised of mountainous areas from where the main stream (Atari River) originates 

and flows to the relatively flat plains. From ASTER GDEM, the difference in height between the 

lowest and the highest point is 2,389 m. Of the 84 km
2
, 35 km

2 
(42%) is forest, 28 km

2 
(33%) is 

agricultural area and 21 km
2 
(25%) is rangeland.  

 

Fig. 3 Instrumentation and land use in Atari catchment 
                                            RG. Stn is rain gauge, WLG is water level gauge, Met. Stn is meteorological station 
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Under the Project on Irrigation Scheme Development in Central and Eastern Uganda (PISD) 

(JICA, 2017), hydro-meteorological monitoring equipment were set up in Atari catchment in 2015, 

viz., a mid-stream rain-gauge to detect catchment rainfall, a downstream meteorological station to 

measure evapotranspiration parameters and a water level sensor at a control section of Atari River. 

TOPMODEL 

1) Description of TOPMODEL 

TOPMODEL is a conceptual, semi-distributed model suggested by Beven and Kirkby (1979).  It 

divides the soil layer into root zone, unsaturated zone and saturated zone. The upper soil layers 

(root zone and unsaturated zone) are analysed at grid-scale as distributed models while the lower 

layer (saturated zone) is computed as a catchment scale lumped model. TOPMODEL evaluates the 

state of wetness of the surface layer of a basin from the Topographical Index (TI).   

𝑻𝑰 = 𝒍𝒏
𝒂𝒊

𝐭𝐚𝐧 𝜷𝒊
                                                 (1) 

Where ai is upstream contributing area per unit contour length, tan βi is local slope and i is 

grid number. 

TI is derived from a Digital Elevation Model (DEM) and it spatially evaluates the amount of 

surface flow. Details of TOPMODEL are in Mukae, et al. (2017) and Beven and Kirkby (1979). 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Histogram of TI distribution for Atari catchment 

2) Computational Procedure of TOPMODEL 

Input data is observed daily precipitation, observed river discharge, actual evapotranspiration (ETa) 

and a TI that is derived from 30 m grid DEM. Rainfall was measured for each event and other 

hydro-meteorological parameters were recorded at 10-minute logging intervals, but the daily 

averages were used for computation.  

a. The water balance equation of the root zone:  
The amount of water that is stored in the root zone is calculated from the water balance of rainfall 

[L], ETa [L], maximum storage deficit in the root zone (SRmax) [L] and storage deficit in the root 

zone (SRZ) [L].  When SRZ < 0, the excess water (EXi) flows to the unsaturated zone (SUZi) [L].  

Potential evapotranspiration (ET0) is calculated by the Penman-Monteith method (Allen et al., 

1998). ETa is treated as a function of ET0, SRmax and SRZ. 

    𝑬𝑻𝒂 = 𝑬𝑻𝟎 (
𝑺𝑹𝒁𝒊

𝑺𝑹𝒎𝒂𝒙
)                                 (2) 

b. The water balance equation of the saturated zone: 

Base flow discharge, (Qsub) [LT
-1

] is calculated using the parameters m, and Te [L
2
T

-1
], catchment 

mean TI, (λ) [-] and the mean storage deficit in the watershed 𝑆𝑖  [L]:  

𝑸𝒔𝒖𝒃 = 𝑻𝒆𝒆𝝀𝑺𝒊 𝒎⁄               (3) 
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c. The water balance equation of the unsaturated zone 

The unsaturated zone is a temporary water storage zone that links the root zone to the saturated 

zone. The mean storage deficit in the watershed at the start of the calculation (initial time step), 

𝑆𝑖 is obtained from Eq. (3), assuming that the initial discharge is Q0 [LT
-1

].  

 𝑺𝒊 = −𝒎 𝐥𝐧
𝑸𝟎

𝑻𝒆𝒆−𝝀                                (4) 

Like in Fig. 3, Si [L] expresses the storage deficit of each grid and UZi [LT
-1

] is the amount of 

water supplied from the unsaturated zone to saturated zone, with i being the grid number.  Since, 

cells with the same value of TI are considered to be hydrologically similar, computation is done for 

each TI class (Fig. 2) and not for every individual grid. If Si is ≤ 0, then the TI class is considered to 

be saturated, and excess water inflow from the root zone (EXi) becomes surface flow, as shown in 

Fig. 3. If Si > 0, the excess water inflow is temporarily added to SUZi. 

 𝑼𝒁𝒊 =
𝑺𝑼𝒁𝒊

𝑺𝒊𝒕𝒅
             (5) 

where td [TL
-1

] is the delay time constant, a parameter that expresses the period of retention. 

TOPMODEL requires the calibration of 5 unknown parameters, namely; exponential decay 

parameter (m), mean value of downslope transmissivity when the soil is just saturated (Te), delay 

time constant (td), maximum root zone storage deficit (SRmax) and initial root zone storage deficit 

(SRZinitial) using the Monte-Carlo method. Nush-Sutcliffe efficiency (NS) and Root Mean Square 

Error (RMSE) are the evaluation functions adopted to compare agreement between observed and 

simulated discharge. Having evaluated the parameters, it is then possible to simulate river 

discharge following a rainfall-runoff event. 

𝐍𝐒 = 𝟏 − (
∑ 𝑬𝑽𝒏

𝟏

∑ 𝑴𝑽𝒏
𝟏

)                               (6) 

𝐑𝐌𝐒𝐄 = √
∑ 𝑬𝑽𝒏

𝟏

𝒏
                                  (7) 

Where EV is error variance ((observed value - simulated value)
2
), MV is mean variance 

((observed value – mean observed value)
2
) and n is number of observation days. 

 

Fig. 5 Schematic of TOPMODEL (Source: Mukae, et al., 2017) 

Data Requirement 

The input data for TOPMODEL is precipitation, river discharge and meteorological data used to 

estimate ET0. Averaged daily data for 2015 was used. A rainfall event was defined as consecutive 

days of effective rainfall, and effective rainfall as that daily rainfall ≥ 5.0 mm (Ali and Mubarak, 

2017).  

From 2015-March-24 to 2015-December-14, 54 rainfall events were observed. 

Correspondingly, the total amount of precipitation, evapotranspiration and river discharge was 
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1,646 mm, 1,149 mm and 499 mm from where it was inferred that 30% of the precipitation is 

discharged to the downstream via the river. 

Description of Study-defined Terminologies and Methods 

Table 1 is a representation of the Sequentially Accumulated Rainfall Events (SARE) concept. All 

the SARE had the same starting date but the end dates were variable. 

The ‘true’ parameters were those derived from inputting all SARE in 2015 while ‘non-true’ 

parameters were those got by using partial SARE during model calibration. The ‘true’ parameters 

were considered to be optimal for full year hydrological simulation because they were assumed to 

represent an average characteristic of all observed events in 2015, which is not the case with ‘non-

true’ parameters.  

The percentage error of ‘non-true’ parameters was determined by comparison with the ‘true’ 

parameter value – The ‘non-true’ parameters with maximum error of ± 30% were classified as 

good and therefore close enough to ‘true’ value. Equation (8) shows computation of error of ‘non-

true’ parameter,. 

𝑬𝒓𝒓𝒐𝒓 =  (
𝒏𝒕𝒑−𝒕𝒑

𝒕𝒑
) × 𝟏𝟎𝟎%                 (8) 

where ntp is ‘non-true’ parameter value and tp is ‘true’ parameter value.  

Parameterisation was done for SARE beginning with the 1
st
 event and sequentially 

progressing until all 54 rainfall events in 2015 were used. In total, model calibration was done 54 

times. However, it was impossible to evaluate the 1
st
 event alone since its NS value was infinity. 

Results from 1 SARE were thus omitted from further analysis. 

Table 1 The SARE Concept 

 
Yellow indicates the partial target rainfall event(s), which is used to calculate the unknown parameters for each SARE 

occurrence. Orange indicates all SARE.    

RESULTS AND DISCUSSION 

Parameter Descriptive Statistics 

Table 2 ‘True’ and ‘non-true’ parameters 

    m Te (×106) td SRZinitial SRmax NS RMSE 

‘true’ value   24 762 0.013 0.006 0.008 0.57 0.73 

‘non-true’ 

value 

Min 18 40 0.011 0.002 0.004 0.48 0.00 

Max 53 987 0.020 0.009 0.009 0.92 0.73 

Mean 21 587 0.017 0.006 0.007 0.68 0.53 

s.d* 5 257 0.003 0.001 0.001 0.10 0.19 

CoV** 0.25 0.44 0.16 0.24 0.16 0.15 0.36 
* Standard deviation, ** Coefficient of variance = Standard deviation / Mean  

Table 2 shows the descriptive statistics of the calibrated parameters. ‘Non-true’ parameter values 

vary from 18 to 53, 40 to 987, 0.011 to 0.020, 0.002 to 0.009 and 0.004 to 0.009 for parameters m, 

Te, td, SRZinitial and SRmax respectively. In addition, NS and RMSE varies from 0.48 to 0.92 and from 

Calculate unknown parameters

(m , T e , t d , SRZ initial and SR max)

1 1st event → non-true parameter value of 1 SARE

2 1st event 2nd event → non-true parameter value of 2 SARE

3 1st event 2nd event 3rd event → non-true parameter value of 3 SARE

･ ･ ･ ･ ･

･ ･ ･ ･ ･

･ ･ ･ ･ ･

53 1st event 2nd event 3rd event ･ ･ ･ 53rd event → non-true parameter value of 53 SARE

54 1st event 2nd event 3rd event ･ ･ ･ 53rd event 54th event → true parameter value

Rainfall event count Sequentially Accumulated Rainfall Events (SARE)
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Fig. 7 Evaluation function under different SARE 

0.00 to 0.73 correspondingly. Based on the classification criterion of NS values by Foglia et al. 

(2009), the goodness of fit varies from ‘good’ to ‘excellent’. The coefficients of variance (CoV) for 

‘non-true’ parameters are 0.25, 0.44, 0.16, 0.24 and 0.16 for m, Te, td, SRZinitial and SRmax in that 

order. It follows that, Te and SRmax are the most and least variable respectively. It is then clear that 

the 5 parameters are changeable depending on the number of rainfall events. 

 
Fig. 6 Error plots of calibrated parameters 

Parameter Trends 

Fig. 6 is a graph of the parameter error under different numbers of SARE conditions and Fig. 5 

shows the trend of evaluation functions with the number of SARE.  

 
 

The mean errors for SRmax, SRZinitial, m, Te and td are -8%, -10%, -13%, -23% and 37% 

correspondingly. It takes 3 SARE for parameter m to stabilise within an error rage of ±30%. From 

1 up to 16 SARE, Te is highly changeable, with error ranging from -95% to -54%. It requires at 

least 17 SARE to stabilise parameter Te within ±30% error range. The first instance of low 

observed event precipitation (9.4 mm at 10
th
 event) seemed to cause Te value to increase sharply. 

From 1 up to 18 SARE, td shows no observable trend, with error ranging from 4% to 56%. 

However, from 19 to 43 SARE, parameter td stabilises within a narrow error range of 52% to 55%. 

The parameter value then begins to steadily decrease at 44 SARE, eventually falling within 

acceptable error range at 49 SARE. Although SRmax and SRZinitial are the least variable parameters 

with respect to their means, there is no discernible trend of their behaviour with the number of 

SARE. This might be because of the gross uncertainties in calibrating soil storage deficits, as 
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observed by Coles et al. (1997) and Campling et al. (2002). But, different from Te, it is seen that 

there is a large reduction in both SRmax (-38%) and SRZinitial (-69%) at 10 SARE. 

NS and RMSE decrease and increase respectively with increasing SARE. It seems that as the 

number of SARE increases, the parameters become an average representation of many more varied 

rainfall characteristics, but not the best representation for each individual rainfall event. 

Parameter m is the least affected by the rainfall events inputted while parameter td is the most 

affected, requiring at least 3 and 49 SARE respectively to stabilise within ±30% error bounds. 

Therefore, the minimum number of rainfall events required to calibrate TOPMODEL and to 

optimise td in mid-sized equatorial catchments in Eastern Uganda are equivalent. Consequently, it 

requires at least 49 rainfall events to calibrate TOPMODEL in 2015. 

Summarily, it is seen that rainfall characteristics influence the parameterization of 

TOPMODEL in mid-sized equatorial catchments.    

CONCLUSION 

A hydrological model, TOPMODEL, was applied to a different number of Successively 

Accumulated Rainfall Events (SARE) to examine parameter sensitivity to rainfall characteristics. In 

this study we deduce the following: (1) Dependence of calibration parameters on rainfall 

characteristics was evident, with exponential decay parameter (m) being the least affected and 

delay time (td) being the most affected by rainfall event characteristics; Further, (2) in mid-sized 

equatorial catchments, td was the determining parameter for the minimum number of SARE needed 

for calibrating TOPMODEL for yearly hydrological simulation. To confirm the observations 

presented here, more yearly observed hydro-meteorological data and studies on other catchments is 

needed. Furthermore, future studies should consider hydrological conditions like base flow, rainfall 

intensity and effective discharge in order to better understand the effect of rainfall events. 
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