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Abstract The Burdekin delta is the largest sugarcane producing region in Australia (85,000 

ha) and a major coastal output to the Great Barrier Reef (GBR). Run-off from cultivation 

areas contain heavy metals from fertilizers, contributing to elevated Cd, Hg, and Pb in 

waterways. Validating the efficacy of sustainable agriculture practice is necessary to 

determine if current strategies protect ecosystems and uphold environmental standards. The 

objective of this study is to utilize Pb isotope tracing (207/206Pb and 208/206Pb) and elevated 

trace-elements (Cd, Hg, and Pb) as a monitoring tool, to detect residual heavy metals from 

fertilizers and alternative pollutant sources in the Burdekin catchment. Lead-isotope ratios 

from dry-season samples of embankment soils/sediment (n=15, 2016, 2019) and water 

(n=35, 2016-2020), reveals sources of natural forest soils, cane soils (fertilizer enriched), 

ambient dust, and historic coal fly-ash (Collinsville Power Station). Pb isotope 

compositions and low levels of heavy metals (soil/sediment: TCd 0.11 mg/kg, THg 0.03 

mg/kg and TPb 11.02 mg/kg; estuary: THg 0.011 μg/L and TPb 4.99 μg/L) indicate that 

fertilizers applied to soils have minimal impact on Burdekin waterways during the dry-

season, suggesting effective agricultural practice and sustainable irrigation control.  
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INTRODUCTION  

The GBR is the largest reef ecosystem on the planet (344,400 km2) and a World Heritage site 

located off the coast of Queensland (QLD), Australia (Coggan et al., 2021). Land-runoff from 

coastal catchments can adversely impact the GBR (Lewis et al., 2021). Agricultural 

mismanagement, (i.e. fertilizer overuse and uncontrolled irrigation run-off) contributes to water 

quality risk through the accumulation of heavy metals in soil and remobilization to waterways 

(Table 1; Alengebawy et al., 2021; Coggan et al., 2021). In literature, research has conventionally 

used elevated heavy metals to establish pollutant presence and Pb-isotopes to trace pollutant source 

by providing a measure of geologic age (Table 1; Diaz-somoano et al., 2009; Lottermoser, 2009; 

Alengebawy et al., 2021). Following ~10 years of sugarcane cropping, Rayment (2007) noted Cd 

and Hg were elevated in QLD cane soils. Davis, et al. (2008) detected sugarcane pesticides in 

Burdekin waterways. Extended fertilizer use is known to degrade soil fertility and productivity 

(Ping et al., 2020). Fertilizer overuse burdens the environment, economic and social value of both 

the GBR and the sugarcane industry (DAE, 2017). Sugarcane production is $1.33 billion AUD 

(gross); the Burdekin represents 31% or $4.12 million AUD (DAE, 2017). Aboriginal and Torres 

Strait Islanders have maintained cultural ties to the GBR for ~ 60,000 years. There are over 70 

identified clans in the GBR; 16 of which reside in the Burdekin (DAE, 2017). Coastal communities 
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with high fish intake risk methyl-Hg and Cd (neurotoxins) exposure; illustrating community 

dependence upon ecosystem health (Haswell-Elkins et al., 2006; Russell et al., 2015). 

Table 1 Summary of mean cadmium, mercury and lead concentrations (mg/kg) in 

contaminated soils, fertilizers, sugar cane soil, and sugarcane by-products  

loading to soil 

Description Cd (mg/kg) Hg (mg/kg) Pb (mg/kg) Reference 

Fertilizer Derailment         

Contaminated soil (n=7) 4.21 n.a. 53.7 Noller, 2021  

Contaminated soil (max) 45 n.a. 790 Noller, 2021  

Fertilizer type (N-K-P)         

0-9-0, (n=4) 22 0.5 5.43 Lottermoser, 2009 

TSP, 0-21-0  6.67 0.5 6.68 Lottermoser, 2009 

DAP, 18-20-0 (n=3) 1.18 0.5 0.33 Lottermoser, 2009 

13-14-12 plus 0.85 0.5 132 Lottermoser, 2009 

Sugarcane soil (± SD) 0.05 0.069  27  Rayment, 2007; 2011 

Sugarcane by-product  Cd (kg/ha) Hg (kg/ha) Pb (kg/ha)   

Filter Mud  0.011 n.a. n.a. Rayment, 2011 

Mill Ash  0.003 n.a. n.a. Rayment, 2011 

Biosolids  0.11 n.a. n.a. Rayment, 2011 

Soil loading limits  2          n.a. 260 NWQMS, 2000 

Note: N-K-P nitrogen, potassium, and phosphorus; SP, superphosphate; TSP, triple superphosphate; DAP, Di-

ammonium phosphate; sugarcane by-products load to soil (0-10 cm depth).   

OBJECTIVE  

This study investigates utilizing analytical indicators (Pb isotopes: 207/206Pb and 208/206Pb and heavy 

metals: Cd, Pb, and Hg) to monitor sustainable agricultural practice and identify impacts of 

fertilizer to Burdekin waterways. Alternative pollutant sources are also investigated. In this study, 

appropriate fertilizer use and irrigation run-off control defines sustainable agricultural practice.  

METHODOLOGY 

The Burdekin catchment (area ~130,400 km2) resides in the seasonally dry tropics of NE QLD (Fig. 

1). The Upper Burdekin is bordered by coastal ranges (750-1070 m height) < 50 km from the 

coastline and feeds into the largest dammed catchment in QLD, Lake Dalrymple, impounded by the 

Burdekin Falls Dam (BFD). In the dry-season, lower catchment flow is driven by allocated releases 

from the BFD (mean (  ) minimum flow volume ± standard error (se): 4715 406 ML/month) and 

uncontrolled irrigation run-off (QLD Government, 2017). Approximately 75% of surface water 

diversion schemes go to irrigation of sugarcane agriculture (Lewis et al., 2021). Monsoonal rains 

govern flow volumes during the wet season (  se: 1535476 ML 255826). Extreme flooding 

events occur annually, resulting in overspill at BFD, dislodging fertilized material, and dispersing 

heavy metals to waterways. Monitoring of Burdekin River environment health is carried out during 

the dry season (May-November   se:101672 ML 36104) when vehicle access is possible, and 

samples are safe to collect. Wet season volumes also cause dilution (  :15 times, 1986-2021) often 

resulting in undetectable heavy metal concentrations (WMIP, 2022). As a consequence, heavy 

metal concentrations from the run-off events are likely to pose greatest environmental risk during 

the dry-season, when perennial river volumes have returned to “steady-state” flows. Embankment 

soils/sediments (n=15, 0-100 mm depth, 2016, 2019) and water (n=35, unfiltered, 2016, 2018, 

2019 and 2020) were sampled in the Upper and Lower (estuary) sub-catchments of the Burdekin 

watershed during the dry season. Water and sediment samples in 2016 and 2018 (Fig. 1) were 

collected in June and July to demonstrate dry-season sources of heavy metals, and input of soil 

seepage, representing concentrations coinciding with fall of the hydrographic curve. Samples in 
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2019 and 2020 were collected in late November and early December (increase in hydrographic 

curve). Thus, sample collections in 2019 and 2020 (Fig. 1) captured first flush and post run-off 

heavy metal concentrations from the start of the wet-season, including any input from agricultural 

fertilizers. 

Fig. 1 Study area and sample site location map 

Water and soil/sediment were analyzed at the NATA accredited laboratory (ISO/IEC 17025, 

2017) Inorganic Chemistry, Queensland Health and Forensic Scientific Services, Coopers Plains, 

QLD 4108, Australia. Agilent 8800 triple quadrupole inductively coupled plasma mass 

spectrometer (ICP-QQQ; Agilent Technologies, Santa Clara, CA, USA) measured heavy metal 

concentrations. Internal standards, spikes and certified reference materials (CRM, TM-28) were 

used for quality assurance and quality control (QA/QC). QC for Hg analysis used 5% Hg (v/v) 

HNO3 solution (SRM ID 3133, SRM Lot # 060204; High Purity Standards, Charleston, SC 29423, 

USA).  Pb isotope ratios (207/206Pb and 208/206Pb) in water, soil and sediment digests were determined 

by Agilent 8800 ICP-QQQ (CRMs: GXR-1, JG-2, JR-1, JSD-1, JSD-2). Soil/sediment (including 

CRMs) were prepared following the standard operating procedure (SOP 18191). Water samples 

were analyzed directly after addition of 0.2 mL High Purity HNO3 to total 10mL. Pb isotope stock 

standard solution was used from Choice Analytical and prepared via serial dilution. Ratios were 

calculated using instrument software. Blank corrections were made with 0.5mL High Purity HNO3 

in 10mL of deionized water. The ICP-QQQ is tuned following manufactures recommendations 

(Ref 11.3) and QIS: 30638 Operational Guidelines – ICP-MS. Total Hg measurements in soil were 

analyzed by National Measurement Institute Department of Industry, Innovation and Science, 

Sydney, Australia. 

RESULTS AND DISCUSSION 

Mean se of total (T) Hg (0.016 ±0.002 μg/L) and TPb (0.15 ±0.02 μg/L) in freshwater remain 

below ANZG (2018) default guideline values (DGVs) (Table 2). Mercury (  se: 0.011 ± 0.001) in 

the estuary are below marine DGVs. In one estuary sample, TPb (4.99 μg/L) is above a marine 

DGV of 4.4 μg/L (Table 2). At < 2 mm size fraction, embankment soil/sediment samples reflect    

se of TCd (0.11 0.10 mg/kg), THg (0.03 0.004 mg/kg) and TPb (11.02 1.65 mg/kg), all 
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below soil and sediment DGVs throughout the upper and lower catchments (Table 3). The majority 

of Burdekin soils/sediments (80%) and water (72%) samples, reflect  isotopic compositions of cane 

soil (fertilizer enriched) and natural forest soils (Lottermoser, 2009; Fig. 2A and B). Isotope tracing 

also suggests TPb Burdekin soils/sediments and waters are reflective of residual coal fly ash and 

ambient-background dust (Turull et al., 2018). NSW coal fly ash signatures (Fig. 2; Diaz-somoana 

et al., 2009) identified in Burdekin samples likely reflect historic contributions from a nearby 

powerplant. A nearby coal-electricity generation station is the Collinsville Power Plant (Fig. 1). 

Based on current flow statistics, the Burdekin River is highly variable, considerably influencing 

annual sediment and nutrient loads (Brodie and Bainbridge, 2008). This is apparent in Pb isotope 

compositions that vary with sample years (Fig. 2B). In 2016, isotope ratios trend toward phosphate-

fertilizers and are very similar to ratios found in fertilizer-enriched cultivation areas of the Tully 

catchment (QLD; Turull et al., 2018). In 2018 and 2019, ratios in fresh and estuarian waters reflect 

a mixture of sources: NSW coal fly ash, dust, natural forest soils and leaded petrol (1996) (Fig. 2 

B).  

Table 2 Total Hg and Pb (μg/L) in the Burdekin River from 2016, 2018, 2019, and 2020.  

Freshwater THg (μg/L) TPb (μg/L) Saltwater THg* (μg/L) TPb (μg/L) 

N 24 24 N 11 1 

Mean  0.016 0.146 Mean  0.011 4.99 

SD 0.01 0.079 SD 0.004 n.a. 

SE 0.002 0.018 SEM 0.001 n.a. 

Min 0.005 0.053 Min 0.004 n.a. 

Median 0.013 0.111 Median 0.011 n.a. 

80 percentile 0.022 0.149 80 percentile 0.011 n.a. 

95 percentile 0.027 0.204 95 percentile 0.015 n.a. 

99 percentile 0.044 0.372 99 percentile 0.018 n.a. 

Max 0.048 0.414 Max 0.019 n.a. 

Toxicant DGV 0.06a 3.4b Toxicant DGV  0.1a 4.4b 
Note: N, count; SD, standard deviation; SE, standard error, *Collected in 2019 and 2020 n=11, 

 a 99% level of protection for Hg. b 95 % level of protection of species for Pb (ANZG-water, 2018)  

Table 3 Total Cd, Hg and Pb (mg/kg), <2mm size fraction soil/sediment  

from 2016 and 2019 

Summary TCd (mg/kg) THg (mg/kg) TPb (mg/kg) 

n 14 15 14 

No < values 4 9 0 

Mean 0.11 0.03 11.02 

SD 0.37 0.01 6.16 

SE 0.10  0.004 1.65 

Min 0.00 0.02 2.40 

Median 0.02 0.03 9.13 

80 percentile 0.04 0.04 16.00 

95 percentile 0.53 0.05 21.10 

99 percentile 1.23 0.05 24.22 

Max 1.40 0.05 25.00 

Toxicant DGV*  1.5 0.15 50 
Note: * No defined level of protection available (ANZG-sediment, 2018) 

BFD stores are replenished during the wet-season from moonsoonal rains (cf. Townsville 

rainwater    se: pH 6 0.1; Na 1  4 mg/L, Cl 17 7 mg/L, from seawater) and released in the dry 

season for irrigation (Crosbie et al., 2012). Site 7-19 samples, taken below BFD, captures wet-

season water stores from dam releases. This is evident in 7-19 water characteristics, where pH and 

electrical conductivity (EC) are influenced by wet-season rains (   se pH 7.4 0.01, EC: 193 1.1 

µS/cm). Upstream (dry season) waters (  se pH 8.5 0.02, EC: 558 21.1 µS/cm) have higher 

x 
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alkalinity/hardness and EC demonstrating differences between wet/dry waters. In the dry season, 

heavy metal re-mobilization from sugarcane areas has low environmental, economic and social 

risk; with one sample, TPb of 4.99 μg/L (2019), above DGVs of 4.4 μg/L (Table 2). Isotope tracing 

reveals that fertilizer signals remain low throughout the catchment, suggesting sustainble irrigtion 

practice and run-off control. The impact of fertilizer use in this study is likely minimized due to a 

delayed start to the wet season in 2019 and 2020 resulting in reduced rainfall run-off events. It is 

recommended that on-land investigations should be carried out to further inform on fertilizer rates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Pb isotope ratios, 207Pb/206Pb and 208Pb/206Pb, suggest natural and 

                       anthropogenic sources (A) soil/sediment (2016 and 2019) and  

(B) water (2016, 2018 and 2019) 

CONCLUSION  

This study informed on baseline heavy metal concentrations and provides new insights of 

alternative anthropogenic sources impacting Burdekin River water quality (i.e. Collinsville Power 

Plant). Pb isotope tracing and elevated trace elements is effective at monitoring irrigation control. 

Fertilizer use has no impact on the Burdekin River in the dry season, suggesting low environmental, 

economic and social risk. Future land-based investigations could further inform on fertilization 

rates and impact.  
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